SHAP-1Q: Unitied Approximation of any-order

Shapley Interactions

Motivation: Explaining Language Models
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Contribution

. We consider a general form of interaction indices, known as Cll [2] and establish a novel representation,

Sentiment Analysis Model Explanation
"It is a gruesome cannibal
movie. But it's not bad. SHAP: Itisa caniil | movie. [E1 itls Y0 (BTl If you like Hannibal, you'll [6VE fhiS.
If you like Hannibal, you'll
love this."
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. We show that SHAP-IQ is unbiased, consistent and provide a general approximation bound while

. For the Shapley value [1], we find a novel representation and prove that SHAP-IQ is linked to Unbiased

. We use SHAP-IQ to compute any-order n-Sll values on different ML models and demonstrate that SHAP-1Q

which we utilize to construct SHAP-IQ, an efficient sampling-based estimator.
maintaining the efficiency condition for n-Sll [4] and STI [5].
KernelSHAP [8], greatly simplifying its representation.

outperforms existing baseline methods.

Background

SHAP-IQ: SHAPIley Interaction Quantification

Beyond SHAP:

HAP Y /
S From Feature Attributions to Interactions

Feature Set: D :={1,...,d} Discrete Derivatives

Model Behavior: prediction given feature subsets Idea: RECUI'SiVGIy attribute residual contribution

v P(D) = R 8%, () = YT U i, 33) — (T) — 8%, (T) — 8%, (T)

Marginal contributions for arbitrary groups

85(T) == (1) 'W(TUL)

LCS

Marginal Contribution: Impact of single features

5y (T) := v(T U {i}) — u(T)

Shapley Value [1] Cardinal Interaction Index (CII)

@ I"(8)= 3" mi(t)84(T)

TCD\S

, (d—t—1)
V()= ) a0
TCD\{i} '

average marginal contribution
unique attribution given axioms

average discrete derivatives
axiomatic extension for uniqueness unclear

Shapley Interactions Approximations and Challenges

Shapley Interaction Index (Sll) [2] Exponential Complexity requires Approximation!

(d—t—s)l!
(d—s+1)!

SIl, STI: Permutation-based (PB) Approximation
(Extension of ApproShapley [6])

m

e

unique index with recursive axiom

FSI: Kernel-based (KB) Approximation
does not fulfill efficiency

(Extension of KernelSHAP [7])

Other CllIs with Efficiency Existing Approximations are limited!

n-Sll: n-Shapley Value [3]

No Unification: Approximations are index-specific!
(aggregates SlI values)

STI: Shapley Taylor Interaction Index [4]

(efficiency and interaction distribution) Inefficient: PB updates estimates only selectively!

FSI: Faithful Shapley Interaction Index [5]

: : I
(e &d rbrivess) Unknown Guarantees: KB is hard to analyze!

SHAP-IQ
(Theorem 4.1: Novel Representation)

1™(8) = 3 w(T)y (4,17 S))

with weights: y™(t, k) := (—1)* *m(t — k)

(Definition 4.2)

IAEE(S): Exact + Monte Carlo

exact calculation for low- j' ‘Q sampling for

and high-cardinality subsets remaining subsets
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Theoretical Properties

(Theorem 4.3>

SHAP-IQ estimates are unbiased, consistent
with a finite sample deviation bound

(Theorem 4.7>

SHAP-IQ estimates maintain efficiency
for n-SIl and STI and all s-efficient indices

G’heorems 4.4 and 4.5>

Theorem 4.1 leads to a novel Shapley value representation and
SHAP-IQ simplifies Unbiased KernelSHAP |[8]
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Approximation Quality: SHAP-IQ vs. Sll Baseline

Setup

= Task: explanation of a
transformer-based

sentiment analysis
model with S//

= Model: DistiIBERT
fine-tuned on IMDB

= PData: tokenized
sentences with d = 14
words

» SHAP-IQ substantially outperforms the permutation sampling baseline yielding higher-quality
approximation results for the SlI.

Sll, STI, and FSI for LM (59 =3, d

Language Model (LM)

=14)
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Approximation of different Clls using SHAP-IQ

Setup

* Indices: SIl and STI are
estimated with
permutation sampling and
FSI with a regression

= LM: sentiment analysis
model

= SOUM: synthetic model
after [6] with strong
Interactions

> SHAP-1Q efficiently estimates all types of Clls, but the FSI regression estimator on the LM is
superior to SHAP-1Q, showcasing the power of the weighted least squares representation.

Open Source Implementation

E
» shapiq is available for python via pip
*\SHAP-IQW pip install shapig
= compute interactions for all
ClIl indices with available _
estimators K
* plot interactions
J

Funding

Ministry of Culture and Science
of the State of
North Rhine-Westphalia

X DF

Deutsche
Forschungsgemeinschaft




