Fabian Fumagalli

Interim Professor for Statistical Learning and Data Science at LMU Munich (winter term 2025/2026). Active developer of shapiq.

img.jpg

Research Focus

My research focuses on eXplainable AI (XAI) and I am passionate about making machine learning models more transparent and trustworthy. By leveraging mathematical concepts such as Shapley interactions, which address limitations of the Shapley value, and functional ANOVA, I aim to make model decisions more understandable to users. My goal is to narrow the gap between complex machine learning models and practical, interpretable solutions.

Beyond feature-based explanations, I am exploring novel applications of the Shapley value and interactions to enhance other areas in machine learning, such as large language model (LLM) prompt composition and hyperparameter optimization.

I actively contribute to the development of shapiq, which extends the popular shap package to support any-order feature interactions. shapiq decouples the computation of game-theoretic concepts from feature-based explanations, enabling the application of Shapley values and interactions across various machine learning tasks.

Another area of my research focuses on explanations in dynamic environments, particularly in cases with distribution shifts and rapidly changing models, such as evolving data streams. In this context, I co-organized the TempXAI: Explainable AI for Time Series and Data Streams Tutorial-Workshop at ECML PKDD 2024 and the DynXAI: Explainable Artificial Intelligence from Static to Dynamic Workshop at ECML PKDD 2023.

I was part of the collaborative research centre TRR 318 Constructing Explainability.

latest posts

Selected Publications

  1. NeurIPS 2025
    Explaining Similarity in Vision-Language Encoders with Weighted Banzhaf Interactions
    Hubert Baniecki, Maximilian Muschalik, Fabian Fumagalli, Barbara Hammer, Eyke Hüllermeier, and Przemyslaw Biecek
    In Proceedings of Advances in Neural Information Processing Systems (NeurIPS), 2025
  2. AAAI 2026 (Oral)
    HyperSHAP: Shapley Values and Interactions for Hyperparameter Importance
    Marcel Wever, Maximilian Muschalik, Fabian Fumagalli, and Marius Lindauer
    In Fortieth AAAI Conference on Artificial Intelligence, (AAAI), 2025
  3. EMNLP 2025
    Investigating the Impact of Conceptual Metaphors on LLM-based NLI through Shapley Interactions
    Meghdut Sengupta, Maximilian Muschalik, Fabian Fumagalli, Barbara Hammer, Eyke Hüllermeier, Debanjan Ghosh, and Henning Wachsmuth
    In Findings of the Association for Computational Linguistics: EMNLP 2025, 2025
  4. NAACL 2025 (Oral)
    Adaptive Prompting: Ad-hoc Prompt Composition for Social Bias Detection
    Maximilian Spliethöver, Tim Knebler, Fabian Fumagalli, Maximilian Muschalik, Barbara Eva Hammer, Eyke Hüllermeier, and Henning Wachsmuth
    In The 2025 Annual Conference of the Nations of the Americas Chapter of the ACL, 2025
  5. ICLR 2025
    Exact Computation of Any-Order Shapley Interactions for Graph Neural Networks
    Maximilian Muschalik*Fabian Fumagalli*, Paolo Frazzetto, Janine Strotherm, Luca Hermes, Alessandro Sperduti, Eyke Hüllermeier, and Barbara Hammer
    In The Thirteenth International Conference on Learning Representations, 2025
  6. AISTATS 2025
    Unifying Feature-Based Explanations with Functional ANOVA and Cooperative Game Theory
    Fabian Fumagalli, Maximilian Muschalik, Eyke Hüllermeier, Barbara Hammer, and Julia Herbinger
    In The 28th International Conference on Artificial Intelligence and Statistics, 2025
  7. NeurIPS 2024
    shapiq: Shapley Interactions for Machine Learning
    Maximilian Muschalik, Hubert Baniecki, Fabian Fumagalli, Patrick Kolpaczki, Barbara Hammer, and Eyke Hüllermeier
    In The Thirty-eight Conference on Neural Information Processing Systems (NeurIPS) Datasets and Benchmarks Track, 2024
  8. ICML 2024
    KernelSHAP-IQ: Weighted Least Square Optimization for Shapley Interactions
    Fabian Fumagalli, Maximilian Muschalik, Patrick Kolpaczki, Eyke Hüllermeier, and Barbara Hammer
    In Forty-first International Conference on Machine Learning (ICML), 2024
  9. AAAI 2024
    Beyond TreeSHAP: Efficient Computation of Any-Order Shapley Interactions for Tree Ensembles
    Maximilian Muschalik*Fabian Fumagalli*, Barbara Hammer, and Eyke Hüllermeier
    In Thirty-Eighth AAAI Conference on Artificial Intelligence, (AAAI), 2024
  10. AISTATS 2024
    SVARM-IQ: Efficient Approximation of Any-order Shapley Interactions through Stratification
    Patrick Kolpaczki, Maximilian Muschalik, Fabian Fumagalli, Barbara Hammer, and Eyke Hüllermeier
    In International Conference on Artificial Intelligence and Statistics (AISTATS), 2024
  11. IJCNN 2024
    No learning rates needed: Introducing SALSA - Stable Armijo Line Search Adaptation
    Philip Kenneweg, Tristan Kenneweg, Fabian Fumagalli, and Barbara Hammer
    In International Joint Conference on Neural Networks, (IJCNN), 2024
  12. NeurIPS 2023
    SHAP-IQ: Unified Approximation of any-order Shapley Interactions
    Fabian Fumagalli*, Maximilian Muschalik*, Patrick Kolpaczki, Eyke Hüllermeier, and Barbara Hammer
    In Advances in Neural Information Processing Systems 36 (NeurIPS), 2023
  13. MLJ
    Incremental Permutation Feature Importance (iPFI): Towards Online Explanations on Data Streams
    Fabian Fumagalli*, Maximilian Muschalik*, Eyke Hüllermeier, and Barbara Hammer
    Machine Learning, 2023
  14. xAI 2023
    iPDP: On Partial Dependence Plots in Dynamic Modeling Scenarios
    Maximilian Muschalik*Fabian Fumagalli*, Rohit Jagtani, Barbara Hammer, and Eyke Hüllermeier
    In World Conference of Explainable Artificial Intelligence (xAI), 2023
  15. ECML PKDD 2023
    iSAGE: An Incremental Version of SAGE for Online Explanation on Data Streams
    Maximilian Muschalik*Fabian Fumagalli*, Barbara Hammer, and Eyke Hüllermeier
    In Machine Learning and Knowledge Discovery in Databases: Research Track - European Conference, (ECML PKDD), 2023
  16. KI Journal
    Agnostic Explanation of Model Change based on Feature Importance
    Maximilian Muschalik*Fabian Fumagalli*, Barbara Hammer, and Eyke Hüllermeier
    Künstliche Intelligenz, 2022